Blog

Email

Threat Finds

RESPOND

McLaren

Darktrace Defends McLaren Racing From Supply Chain Attacks

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
15
Nov 2021
15
Nov 2021
McLaren Racing chose Darktrace's self-learning AI to fight off supply chain attacks. Learn how Darktrace safeguards their organization with elite cybersecurity.

McLaren Racing has a track record of forming valuable and innovative partnerships. Without these partnerships and the web of organisations that make up our supply chain, it’s unlikely we could be where we are today.

Figure 1: The origins of the different components of McLaren’s 2021 car

Each component of the McLaren Formula 1 car – engine, tyres, brakes, suspension – has a long and complicated backstory, from the R&D labs where it was conceived, to the factory floor on which it was manufactured, to transport and logistics getting it to where it needs to be.

Looking at the entire organisation, the situation is even more complex. IT hardware and software, telemetry, and data analysis tools, each represent a critical component to McLaren Racing’s ecosystem. Without it, we couldn’t function at the top of our game.

But from a security perspective, each of these represent a potential chink in the team’s defensive armour, against a backdrop of a cyber-threat landscape which becomes more hostile every year. As we’ve seen this year from the likes of the SolarWinds hack and the Kaseya software exploit, attackers are waking up to the fact that the supply chain represents a significant opportunity.

A single supplier may represent a point of entry into thousands of organisations. For cyber-criminals, this means one successful compromise can result in more access, more data, and ultimately greater profit.

McLaren Racing is all too aware of recent shifts in the cyber security landscape. A successful cyber-attack on our organisation could have implications on race-day performance, as well as our wider reputation. Last year, we brought in a new line of defence with Darktrace’s Self-Learning AI technology, that learns our business from the ground up, and interrupts subtle and fast-moving cyber-threats wherever they emerge – including from our supply chain.

Threat find: Attacking through the inbox

In this attack, 12 employees were targeted in a systematic phishing attack, receiving an email from a long-established team supplier, notifying them that a voicemail had been left for them.

Figure 2: An extract of the phishing email coaxing the recipient to click

The link to play the voicemail led to a legitimate-looking voicemail service site.

When following the link to access the message, the site requested Office 365 credentials to authenticate the user, designed to harvest the McLaren Racing credentials that could be used to access our environment.

Figure 3: The fake login page

Of the 12 recipients, several key people within our team were targeted, including technical directors and purchase ledgers. The attackers behind this phishing campaign no doubt hand-picked these individuals both due to their authorization powers and the likelihood their accounts had access to sensitive data.

Had these accounts been compromised, the attackers would have had access to some of the highest sensitivity of intellectual property, finance information and executive level strategy within racing.

Darktrace’s email security technology, Antigena Email, assessed the content of these emails as they were delivered, and identified several unusual indicators of attack. While it recognised that the account was one familiar to McLaren, it compared this attack with previous emails sent from the supplier and recognised several risk indicators. Darktrace Antigena autonomously took the decision to hold the email from being delivered to users’ mailboxes.

Figure 4: Antigena Email reveals in plain language why the email was suspicious and the action it took

Legitimate communication between our team and the supplier was still flowing uninterrupted, as Darktrace Antigena was assessing each email’s indicators for risk. The following day, the supplier’s account manager in our team received an email from the supplier in question, informing them that one of their accounts had been compromised and was used to send phishing emails to some of their customers. This confirmed that Antigena Email had correctly identified the email as malicious.

Traditional email security tools rely on historical attack data to determine friend from foe, but this is only effective in cases where an email domain or a malicious URL has been previously encountered. In this case, traditional filtering allowed the email through. Only by having Darktrace’s understanding of ‘self’ and Autonomous Response was McLaren able to avoid exposure to risk on this occasion.

This is reflective of a wider pattern noticed by the security team. Darktrace determines that around 40% of emails going through Antigena Email would have been detected by our other security tools, suggesting that Darktrace is detecting an extra 60% of malicious emails and taking action to ensure we are protected 24/7.

This was just one example of an attempted attack on McLaren through the inbox. On another occasion, Antigena Email identified an email that was attempting to impersonate a sponsor. The email in question was requesting that a senior McLaren Racing figure reset their password and contained a suspicious link that led to a credential harvester. Again, Antigena took action on the emails at time of delivery, and our internal cyber team never had to respond to what could have been a serious incident. It’s through Darktrace taking autonomous action like this on a daily basis that we are able to focus our time on higher-value, strategic work, driving success for the wider team.

Why the supply chain demands a new approach to security

In today’s digitised world, it is impossible to operate as a fluid, dynamic organisation without interacting with suppliers and partners at every digital layer: from email, to file sharing services and technology partners delivered through the cloud. As McLaren grows and works with leading global organisations to improve its performance, its supply chain ecosystem will only get broader.

Attackers are targeting suppliers because they represent a single key that opens potentially dozens or even hundreds of locks, and email is just one avenue of attack. By partnering with Darktrace, McLaren experiences the value of self-learning protection on a daily basis, across its email systems, cloud services, and corporate network.

Whether it’s email or some other form of communication from a supplier, you cannot assume you know who’s on the other side of the keyboard. This is what so many existing security defences do – with static rules and signatures unable to truly tell friend from foe and reveal account takeovers and compromised systems. Modern organisations need a solution that is able to identify potentially malicious activity from suppliers by analysing a broad range of indicators and revealing subtle deviations that indicate threat, and this is where Self-Learning AI shines.

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Ed Green
Head of Commercial Technology, McLaren Racing

Ed Green works in the Architecture practice within the Information Technology function at McLaren Technology Group, as well as being responsible for the successful integration of their Technology Partners into the McLaren ecosystem. Ed joined McLaren in March 2018 after spending 5 years working for Block Solutions, a specialist network consultancy. In previous roles, he led the Consultancy division at a UK Solution Integrator operating across the public, enterprise, and commercial sectors. Ed has driven innovative engagements with organisations such as Harrods, intu, The Francis Crick Institute, and Barts Health NHS Trust. He has also spent seven years on the council at Great Ormond Street Hospital representing the views of patients at a Board level, and he continues his work at the Hospital School as a Governor and supports the school with STEM initiatives.

Book a 1-1 meeting with one of our experts
share this article
COre coverage

More in this series

No items found.

Blog

Inside the SOC

Connecting the Dots: Darktrace’s Detection of the Exploitation of the ConnectWise ScreenConnect Vulnerabilities

Default blog imageDefault blog image
10
May 2024

Introduction

Across an ever changing cyber landscape, it is common place for threat actors to actively identify and exploit newly discovered vulnerabilities within commonly utilized services and applications. While attackers are likely to prioritize developing exploits for the more severe and global Common Vulnerabilities and Exposures (CVEs), they typically have the most success exploiting known vulnerabilities within the first couple years of disclosure to the public.

Addressing these vulnerabilities in a timely manner reduces the effectiveness of known vulnerabilities, decreasing the pace of malicious actor operations and forcing pursuit of more costly and time-consuming methods, such as zero-day related exploits or attacking software supply chain operations. While actors also develop tools to exploit other vulnerabilities, developing exploits for critical and publicly known vulnerabilities gives actors impactful tools at a low cost they are able to use for quite some time.

Between January and March 2024, the Darktrace Threat Research team investigated one such example that involved indicators of compromise (IoCs) suggesting the exploitation of vulnerabilities in ConnectWise’s remote monitoring and management (RMM) software ScreenConnect.

What are the ConnectWise ScreenConnect vulnerabilities?

CVE-2024-1708 is an authentication bypass vulnerability in ScreenConnect 23.9.7 (and all earlier versions) that, if exploited, would enable an attacker to execute remote code or directly impact confidential information or critical systems. This exploit would pave the way for a second ScreenConnect vunerability, CVE-2024-1709, which allows attackers to directly access confidential information or critical systems [1].

ConnectWise released a patch and automatically updated cloud versions of ScreenConnect 23.9.9, while urging security temas to update on-premise versions immediately [3].

If exploited in conjunction, these vulnerabilities could allow a malicious actor to create new administrative accounts on publicly exposed instances by evading existing security measures. This, in turn, could enable attackers to assume an administrative role and disable security tools, create backdoors, and disrupt RMM processes. Access to an organization’s environment in this manner poses serious risk, potentially leading to significant consequences such as deploying ransomware, as seen in various incidents involving the exploitation of ScreenConnect [2]

Darktrace Coverage of ConnectWise Exploitation

Darktrace’s anomaly-based detection was able to identify evidence of exploitation related to CVE-2024-1708 and CVE-2024-1709 across two distinct timelines; these detections included connectivity with endpoints that were later confirmed to be malicious by multiple open-source intelligence (OSINT) vendors. The activity observed by Darktrace suggests that threat actors were actively exploiting these vulnerabilities across multiple customer environments.

In the cases observed across the Darktrace fleet, Darktrace DETECT™ and Darktrace RESPOND™ were able to work in tandem to pre-emptively identify and contain network compromises from the onset. While Darktrace RESPOND was enabled in most customer environments affected by the ScreenConnect vulnerabilities, in the majority of cases it was configured in Human Confirmation mode. Whilst in Human Confirmation mode, RESPOND will provide recommended actions to mitigate ongoing attacks, but these actions require manual approval from human security teams.

When enabled in autonomous response mode, Darktrace RESPOND will take action automatically, shutting down suspicious activity as soon as it is detected without the need for human intervention. This is the ideal end state for RESPOND as actions can be taken at machine speed, without any delays waiting for user approval.

Looking within the patterns of activity observed by Darktrace , the typical  attack timeline included:

Darktrace observed devices on affected customer networks performing activity indicative of ConnectWise ScreenConnect usage, for example connections over 80 and 8041, connections to screenconnect[.]com, and the use of the user agent “LabTech Agent”. OSINT research suggests that this user agent is an older name for ConnectWise Automate [5] which also includes ScreenConnect as standard [6].

Darktrace DETECT model alert highlighting the use of a remote management tool, namely “screenconnect[.]com”.
Figure 1: Darktrace DETECT model alert highlighting the use of a remote management tool, namely “screenconnect[.]com”.

This activity was typically followed by anomalous connections to the external IP address 108.61.210[.]72 using URIs of the form “/MyUserName_DEVICEHOSTNAME”, as well as additional connections to another external, IP 185.62.58[.]132. Both of these external locations have since been reported as potentially malicious [14], with 185.62.58[.]132 in particular linked to ScreenConnect post-exploitation activity [2].

Figure 2: Darktrace DETECT model alert highlighting the unusual connection to 185.62.58[.]132 via port 8041.
Figure 2: Darktrace DETECT model alert highlighting the unusual connection to 185.62.58[.]132 via port 8041.
Figure 3: Darktrace DETECT model alert highlighting connections to 108.61.210[.]72 using a new user agent and the “/MyUserName_DEVICEHOSTNAME” URI.
Figure 3: Darktrace DETECT model alert highlighting connections to 108.61.210[.]72 using a new user agent and the “/MyUserName_DEVICEHOSTNAME” URI.

Same Exploit, Different Tactics?  

While the majority of instances of ConnectWise ScreenConnect exploitation observed by Darktrace followed the above pattern of activity, Darktrace was able to identify some deviations from this.

In one customer environment, Darktrace’s detection of post-exploitation activity began with the same indicators of ScreenConnect usage, including connections to screenconnect[.]com via port 8041, followed by connections to unusual domains flagged as malicious by OSINT, in this case 116.0.56[.]101 [16] [17]. However, on this deployment Darktrace also observed threat actors downloading a suspicious AnyDesk installer from the endpoint with the URI “hxxp[:]//116.0.56[.]101[:]9191/images/Distribution.exe”.

Figure 4: Darktrace DETECT model alert highlighting the download of an unusual executable file from 116.0.56[.]101.
Figure 4: Darktrace DETECT model alert highlighting the download of an unusual executable file from 116.0.56[.]101.

Further investigation by Darktrace’s Threat Research team revealed that this endpoint was associated with threat actors exploiting CVE-2024-1708 and CVE-2024-1709 [1]. Darktrace was additionally able to identify that, despite the customer being based in the United Kingdom, the file downloaded came from Pakistan. Darktrace recognized that this represented a deviation from the device’s expected pattern of activity and promptly alerted for it, bringing it to the attention of the customer.

Figure 5: External Sites Summary within the Darktrace UI pinpointing the geographic locations of external endpoints, in this case highlighting a file download from Pakistan.
Figure 5: External Sites Summary within the Darktrace UI pinpointing the geographic locations of external endpoints, in this case highlighting a file download from Pakistan.

Darktrace’s Autonomous Response

In this instance, the customer had Darktrace enabled in autonomous response mode and the post-exploitation activity was swiftly contained, preventing the attack from escalating.

As soon as the suspicious AnyDesk download was detected, Darktrace RESPOND applied targeted measures to prevent additional malicious activity. This included blocking connections to 116.0.56[.]101 and “*.56.101”, along with blocking all outgoing traffic from the device. Furthermore, RESPOND enforced a “pattern of life” on the device, restricting its activity to its learned behavior, allowing connections that are considered normal, but blocking any unusual deviations.

Figure 6: Darktrace RESPOND enforcing a “pattern of life” on the offending device after detecting the suspicious AnyDesk download.
Figure 6: Darktrace RESPOND enforcing a “pattern of life” on the offending device after detecting the suspicious AnyDesk download.
Figure 7: Darktrace RESPOND blocking connections to the suspicious endpoint 116.0.56[.]101 and “*.56.101” following the download of the suspicious AnyDesk installer.
Figure 7: Darktrace RESPOND blocking connections to the suspicious endpoint 116.0.56[.]101 and “*.56.101” following the download of the suspicious AnyDesk installer.

The customer was later able to use RESPOND to manually quarantine the offending device, ensuring that all incoming and outgoing traffic to or from the device was prohibited, thus preventing ay further malicious communication or lateral movement attempts.

Figure 8: The actions applied by Darktrace RESPOND in response to the post-exploitation activity related to the ScreenConnect vulnerabilities, including the manually applied “Quarantine device” action.

Conclusion

In the observed cases of the ConnectWise ScreenConnect vulnerabilities being exploited across the Darktrace fleet, Darktrace was able to pre-emptively identify and contain network compromises from the onset, offering vital protection against disruptive cyber-attacks.

While much of the post-exploitation activity observed by Darktrace remained the same across different customer environments, important deviations were also identified suggesting that threat actors may be adapting their tactics, techniques and procedures (TTPs) from campaign to campaign.

While new vulnerabilities will inevitably surface and threat actors will continually look for novel ways to evolve their methods, Darktrace’s Self-Learning AI and behavioral analysis offers organizations full visibility over new or unknown threats. Rather than relying on existing threat intelligence or static lists of “known bads”, Darktrace is able to detect emerging activity based on anomaly and respond to it without latency, safeguarding customer environments whilst causing minimal disruption to business operations.

Credit: Emma Foulger, Principal Cyber Analyst for their contribution to this blog.

Appendices

Darktrace Model Coverage

DETECT Models

Compromise / Agent Beacon (Medium Period)

Compromise / Agent Beacon (Long Period)

Anomalous File / EXE from Rare External Location

Device / New PowerShell User Agent

Anomalous Connection / Powershell to Rare External

Anomalous Connection / New User Agent to IP Without Hostname

User / New Admin Credentials on Client

Device / New User Agent

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Compromise / Suspicious Request Data

Compliance / Remote Management Tool On Server

Anomalous File / Anomalous Octet Stream (No User Agent)

RESPOND Models

Antigena / Network::External Threat::Antigena Suspicious File Block

Antigena / Network::External Threat::Antigena File then New Outbound Block

Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block

Antigena / Network::Significant Anomaly::Antigena Controlled and Model Breach

Antigena / Network::Insider Threat::Antigena Unusual Privileged User Activities Block

Antigena / Network / External Threat / Antigena Suspicious File Pattern of Life Block

Antigena / Network / Insider Threat / Antigena Unusual Privileged User Activities Pattern of Life Block

List of IoCs

IoC - Type - Description + Confidence

185.62.58[.]132 – IP- IP linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

108.61.210[.]72- IP - IP linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

116.0.56[.]101    - IP - IP linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

/MyUserName_ DEVICEHOSTNAME – URI - URI linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

/images/Distribution.exe – URI - URI linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

24780657328783ef50ae0964b23288e68841a421 - SHA1 Filehash - Filehash linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

a21768190f3b9feae33aaef660cb7a83 - MD5 Filehash - Filehash linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

MITRE ATT&CK Mapping

Technique – Tactic – ID - Sub-technique of

Web Protocols - COMMAND AND CONTROL - T1071.001 - T1071

Web Services      - RESOURCE DEVELOPMENT - T1583.006 - T1583

Drive-by Compromise - INITIAL ACCESS - T1189 – NA

Ingress Tool Transfer   - COMMAND AND CONTROL - T1105 - NA

Malware - RESOURCE DEVELOPMENT - T1588.001- T1588

Exploitation of Remote Services - LATERAL MOVEMENT - T1210 – NA

PowerShell – EXECUTION - T1059.001 - T1059

Pass the Hash      - DEFENSE EVASION, LATERAL MOVEMENT     - T1550.002 - T1550

Valid Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078 – NA

Man in the Browser – COLLECTION - T1185     - NA

Exploit Public-Facing Application - INITIAL ACCESS - T1190         - NA

Exfiltration Over C2 Channel – EXFILTRATION - T1041 – NA

IP Addresses – RECONNAISSANCE - T1590.005 - T1590

Remote Access Software - COMMAND AND CONTROL - T1219 – NA

Lateral Tool Transfer - LATERAL MOVEMENT - T1570 – NA

Application Layer Protocol - COMMAND AND CONTROL - T1071 – NA

References:

[1] https://unit42.paloaltonetworks.com/connectwise-threat-brief-cve-2024-1708-cve-2024-1709/  

[2] https://www.huntress.com/blog/slashandgrab-screen-connect-post-exploitation-in-the-wild-cve-2024-1709-cve-2024-1708    

[3] https://www.huntress.com/blog/a-catastrophe-for-control-understanding-the-screenconnect-authentication-bypass

[4] https://www.speedguide.net/port.php?port=8041  

[5] https://www.connectwise.com/company/announcements/labtech-now-connectwise-automate

[6] https://www.connectwise.com/solutions/software-for-internal-it/automate

[7] https://www.securityweek.com/slashandgrab-screenconnect-vulnerability-widely-exploited-for-malware-delivery/

[8] https://arcticwolf.com/resources/blog/cve-2024-1709-cve-2024-1708-follow-up-active-exploitation-and-pocs-observed-for-critical-screenconnect-vulnerabilities/https://success.trendmicro.com/dcx/s/solution/000296805?language=en_US&sfdcIFrameOrigin=null

[9] https://www.connectwise.com/company/trust/security-bulletins/connectwise-screenconnect-23.9.8

[10] https://socradar.io/critical-vulnerabilities-in-connectwise-screenconnect-postgresql-jdbc-and-vmware-eap-cve-2024-1597-cve-2024-22245/

[11] https://www.trendmicro.com/en_us/research/24/b/threat-actor-groups-including-black-basta-are-exploiting-recent-.html

[12] https://otx.alienvault.com/indicator/ip/185.62.58.132

[13] https://www.virustotal.com/gui/ip-address/185.62.58.132/community

[14] https://www.virustotal.com/gui/ip-address/108.61.210.72/community

[15] https://otx.alienvault.com/indicator/ip/108.61.210.72

[16] https://www.virustotal.com/gui/ip-address/116.0.56[.]101/community

[17] https://otx.alienvault.com/indicator/ip/116.0.56[.]101

Continue reading
About the author
Justin Torres
Cyber Analyst

Blog

Email

How Empowering End Users can Improve Your Email Security and Decrease the Burden on the SOC

Default blog imageDefault blog image
08
May 2024

Why do we pay attention to the end user?

Every email security solution filters inbound mail, then typically hands over false positives and false negatives to the security team for manual triage. A crucial problem with this lifecycle is that it ignores the inevitability of end users being at the front line of any organization. Employees may receive point in time security awareness training, but it is rarely engaging or contextualized to their reality. While an employee may report a suspicious-looking email to the security team, they will rarely get to understand the outcome or impact of that decision. This means that the quality of reporting never improves, so the burden on the security team of triaging these emails – of which 90% are falsely reported – persists and grows with the business over time.

At Darktrace, we recognize that employees will always be on the front line of email security. That’s why we aim to improve end-user reporting from the ground up, reducing the overall number of emails needing triage and saving security team resource.

How does Darktrace improve the quality of end-user reporting?

Darktrace prioritizes improving users’ security awareness to increase the quality of end-user reporting from day one. We train users and optimize their experience, which in turn provides better detection. 

That starts with training and security awareness. Traditionally, organizations oblige employees to attend point-in-time training sessions which interrupt their daily work schedules. With Darktrace/Email, if a message contains some potentially suspicious markers but is most likely safe, Darktrace takes a specific action to neutralize the risky components and presents it to the user with a simple narrative explaining why certain elements have been held back. The user can then decide whether to report this email to the security team. 

AI shares its analysis in context and in real time at the moment a user is questioning an email
Figure 1: AI shares its analysis in context and in real time at the moment a user is questioning an email

The AI narrative gives the user context for why their specific email may carry risk, putting their security awareness training into practice. This creates an element of trust with the security solution, rather than viewing it as outside of daily workflows. Users may also receive a daily or weekly digest of their held emails and make a decision on whether to release or report them.  

Whatever the user’s existing workflow is for reporting emails, Darktrace/Email can integrate with it and improve its quality. Our add-in for Outlook gives users a fully optimized experience, allowing them to engage with the narratives for each email, as well as non-productive mail management. However, if teams want to integrate Darktrace into an existing workflow, it can analyze emails reported to an internal SOC mailbox, the native email provider’s 'Report Phish’ button, or the ‘Knowbe4’ button.

By empowering the user with contextual feedback on each unique email, we foster employee engagement and elevate both reporting quality and security awareness. In fact, 60% fewer benign emails are reported because of the extra context supplied by Darktrace to end users. The eventual report is then fed back to the detection algorithm, improving future decision-making.  

Reducing the amount of emails that reach the SOC

Out of the higher-quality emails that do end up being reported by users, the next step is to reduce the amount of emails that reach the SOC.   

Once a user reports an email, Darktrace will independently determine if the mail should be automatically remediated based on second level triage. Darktrace/Email’s Mailbox Security Assistant automates secondary triage by combining additional behavioral signals and the most advanced link analysis engine we have ever built. It detects 70% more sophisticated malicious phishing links by looking at an additional twenty times more context than at the primary analysis stage, revealing the hidden intent within interactive and dynamic webpages. This directly alleviates the burden of manual triage for security analysts.

Following this secondary triage the emails that are deemed worthy of security team attention are then passed over, resulting in a lower quantity and higher quality of emails for SOC manual triage.

Centralizing and speeding analysis for investigations

For those emails that are received by the SOC, Darktrace also helps to improve triage time for manual remediation.  

AI-generated narratives and automated remediation actions empower teams to fast-track manual triage and remediation, while still providing security analysts with the necessary depth. With live inbox view, security teams gain access to a centralized platform that combines intuitive search capabilities, Cyber AI Analyst reports, and mobile application access. With all security workflows consolidated within a unified interface, users can analyze and take remediation actions without the need to navigate multiple tools, such as e-discovery platforms – eliminating console hopping and accelerating incident response.

Our customers tell us that our AI allows them to go in-depth quickly for investigations, versus other solutions that only provide a high-level view.

Cyber AI Analyst provides a simple language narrative for each reported email, allowing teams to quickly understand why it may be suspicious
Figure 2: Cyber AI Analyst provides a simple language narrative for each reported email, allowing teams to quickly understand why it may be suspicious

Conclusion

Unlike our competitors, we believe that improving the quality of users’ experience is not only a nice-to-have, but a fundamental means for improving security. Any modern solution should consider end users as a key source of information as well as an opportunity for defense. Darktrace does both – optimizing the user experience as well as our AI learning from the user to augment detection.  

The benefits of empowering users are ultimately felt by the security team, who benefit from improved detection, a reduction in manual triage of benign emails, and faster investigation workflows.

Augmented end user reporting is just one of a range of features new to Darktrace/Email. Check out the latest Innovations to Darktrace/Email in our recent blog.

Continue reading
About the author
Carlos Gray
Product Manager
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Start your free trial
Darktrace AI protecting a business from cyber threats.